Spatial Clustering Algorithm Based on Hierarchical-Partition Tree
نویسندگان
چکیده
In spatial clustering, the scale of spatial data is usually very large. Spatial clustering algorithms need high performance, good scalability, and are able to deal with noise and multidimensional data. In this paper, we propose a rapid spatial clustering algorithm based on hierarchical-partition tree. The proposed algorithm partitions spatial data into subsets by simple arithmetical calculation and set calculation, which are separately based on single-dimensional distance and set-indices. At the same time, we propose a novel spatial indexing technology named hierarchical-partition tree to store and search spatial data. Our experimental results on both synthetic and real-world data show that the new algorithm not only has a very high efficiency, but also can deal with clusters of any shaped and highdimensional data. And it is not sensitive to noise data.
منابع مشابه
A partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملBinary Classification Tree with Tuned Observation-based Clustering
There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divi...
متن کاملPerformance Comparison Of Different Clustering Algorithms With ID3 Decision Tree Learning Method For Network Anomaly Detection
This paper proposes a combinatorial method based on different clustering algorithms with ID3 decision tree classification for the classification of network anomaly detection. The idea is to detect the network anomalies by first applying any clustering algorithm to partition it into a number of clusters and then applying ID3 algorithm for the decision that whether an anomaly has been detected or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JDCTA
دوره 4 شماره
صفحات -
تاریخ انتشار 2010